Areal Source Modeling (II)

Chin-Hsun Yeh SSC TI Team Member

Taiwan SSHAC Level 3 PSHA Study Work Shop#3, June 19-23, 2017 Taipei, Taiwan

Logic Tree of Areal Sources

Outline

- Maximum magnitude of subzones
- b-value & activity rate
- Smoothed activity rate in zoneless model
- Focal mechanism statistics
- Depth probability density function
- GMPE used in different source zones
- Logic tree structure of areal sources

Procedure for Parameter Estimations

Processing of Earthquake Catalog

- Mainshocks data without foreshocks and aftershocks (1900~2015/6) (from Prof. Wu)
- Removal of 22 onshore fault earthquakes (from Sinotech Dr. Lee)
- Removal of 3 offshore fault earthquakes (assumed due to Okinawa Trough fault)
- Removal of 1 interface
 earthquake (1920, Mw 8.0, D
 25km)

Regression of G-R relationship

- Check the completeness of earthquake catalog in the Taiwan, Pacific and China Regions, respectively
- Combine two subzones if data in each subzone is less enough when calculating bvalue or depth pdf
- Use the Maximum Likelihood Estimation (Weichert, 1980) to calculate b-value and activity rate in each subzone

Removal of 22 onshore fault-associated EQs Removal of 1 Interface-associated EQs

Western foothills belt:

- Sanyi Fault: 1939(Mw5.5)
- Shihtan, Tuntzuchiao Fault: 1935(Mw7.2)
- Chelungpu Fault: 1999(Mw7.65) 2009(Mw6.3)
- Liuchia Fault: 1930(Mw6.3) \ 1930(Mw6.2)
- Meishan Fault: 1906(Mw6.9)
- Hsinhua Fault: 1946(Mw6.1)

Eastern longitudinal faults:

- Milun Fault: 1913(Mw6.2) \ 1951(Mw7.3) \ 1951(Mw7.1) \ 1982(Mw6.0)
- Lingding Fault: 1951(Mw7.5) 1957(Mw6.5) 1992(Mw5.4)
- Rueyshui Fault: 1972(Mw6.8)
- Luyeh Fault: 1923(Mw5.2)
 ¹ 2006(Mw6.2)
- Chihshang Fault: 1951(Mw6.6) 1951(Mw7.4) 1992(Mw5.3) 2003(Mw6.5)
- Ryukyu Interface :
 - 1920(Mw 8.0) `

Removal of 3 offshore fault-associated EQs

Okinawa Trough fault

- Mw 7.7, 1922/9/1, D 9km
- Mw 7.3, 1922/9/14, D 20 km ₂
- Mw 7.3, 1963/2/13, D 26 km

Maximum Magnitude

Observed M_{max} in Shallow Zones

Observed M_{max} in Subduction Intraslab Zones Seismicity

Upper Limit of M_{max}

- * but less than (for shallow zones)
 7.7 (7.4+0.3) for China Region,
 7.7 (7.4+0.3) for Taiwan Region, and
 8.3 (8.0+0.3) for Pacific Region
- * but less than (for deep zones)
 7.7 (7.4+0.3) for China Region,
 7.7 (7.4+0.3) for Taiwan Region, and
 7.6 (7.3+0.3) for Pacific Region
- * but less than (for subduction zones) 8.1 (7.8+0.3) for Ryukyu Intraslab, and 8.1 also for Manila Intraslab

M_{max} in Truncated Exponential Model

- M_{max}' (probable maximum magnitude) is often larger than observed maximum magnitude by 0.2 to 0.3
- 0.3 → (0.05 + 0.25); 0.5 → (0.25 + 0.25); 0.8 → (0.55 + 0.25)
- Max(Mobs, 6.2)+0.05, +0.25 and +0.55 are considered as the lower, medium and upper estimates, respectively, of M_{max}'
- > Add 0.25 to decrease the difference between observed and modeled occurrence rate at M_{max}' and also let Prob(M $\ge M_{max}'$) > 0
 - **6.2** \rightarrow set a lower bound of the M_{max} for conservative reason

M_{max} in Subzone nearby NPP1 & NPP2

Zoning Scheme	Controlled Zone	C	Observed M _{max}	Max. Magn. in hazard calc.
ZB	BS15	5.19	1978/8/9, D=25.9 km	6.5 / 6.7 / 7.0
ZS	SS04	4.64	1989/2/3, D=33 km	6.5 / 6.7 / 7.0
ZZ	ZS05	6.71	1946/12/4, D=25 km	7.0 / 7.2 / 7.5

M_{max} in Subzone near by NPP4

Zoning Scheme	Controlled Zone	Observed M _{max}		Max. Magn. in hazard calc.
70	BS04	6.50	1982/12/17, D=29.2 km	6.8 / 7.0 / 7.3
۷D	ZB BS03 SS14b	5.13	1988/12/19, D=25.7 km	6.5 / 6.7 / 7.0
75	SS14b	6.08	1922/9/4, D= 0 km	6.5 / 6.7 / 7.0
23	SS04	4.64	1989/2/3, D=33 km	6.5 / 6.7 / 7.0
77	ZS06	7.99	1917/7/4, D=0 km	8.29 / 8.29 / 8.29
<u>L</u> L	ZS01	7.70	1938/6/10, D=20 km	8.0 / 8.0

M_{max} in Subzone nearby NPP3

Zoning Scheme	Controlled Zone	C	Observed M _{max}	Max. Magn. in hazard calc.
70	BS18	7.4	1936/8/22, D=30 km	7.7 / 7.7 / 7.7
ZD	BS21	7.1	1910/6/17, D=0 km	7.4 / 7.6 / 7.9
ZS	SS12	6.73	1925/4/16, D=35 km	7.03 / 7.23 / 7.53
ZZ	ZS07	7.40	1936/8/22, D=30 km	7.7 / 7.7 / 7.7

M_{max} in Intraslab zone nearby NPP1, NPP2 & NPP4

Zoning Scheme	Controlled Zone	C	Observed M _{max}	Max. Magn. in hazard calc.
ZB	BB01	7.60	1959/4/26, D=135 km	7.9 / 8.1 / 8.1
70	SNP03	7.60	1959/4/26, D=135 km	7.9 / 8.1 / 8.1
25	SNP05	7.50	1947/9/26, D110 km	35 km 7.9 / 8.1 / 8.1 35 km 7.9 / 8.1 / 8.1 35 km 7.8 / 8.0 / 8.1 10 km 7.8 / 8.0 / 8.1 72 km 7.7 / 7.9 / 8.1
ZZ	ZB04	7.40	1909/4/14, D=72 km	7.7 / 7.9 / 8.1

M_{max} in Intraslab Zone nearby NPP3

Zoning Scheme	Controlled Zone		Observed M _{max}	Max. Magn. in hazard calc.
ZB	BB03	7.02	2006/12/26, D=46.8 km	7.32 / 7.52 / 7.82
ZS	SSP02	6.57	1971/10/20, D=60 km	6.87 / 7.07 / 7.37
ZZ	ZB01	6.57	1971/10/20, D=60 km	6.87 / 7.07 / 7.37

b-value & Activity Rate (Maximum Likelihood Estimation)

Completeness of EQ Catalog in Taiwan Region

Completeness of EQ Catalog in Pacific Region

Completeness of Earthquake Catalog 9 8.5 8 7.5 7 6.5 Magnitude (M^w) 6.5 6 5.5 4.9 5 4.5 * Info of Earthquake Data: 3.5 - period of time: 1900 ~ 2015/6/30 - range of data (roughly): ISC 3 - magnitude: Mw ≥ 2.0 - total number of earthquake events: 11670 2.5 2└─ 1900 1950 1960 1970 1910 1920 1930 1980 2010 1940 1990 2000 2020 Time in Years 1910 1918 1980

Completeness of EQ Catalog in China Region

Completeness of Earthquake Catalog

China Region:

- 1905 ~ 2015/6, $M_w \ge 4.9$
- 1980 ~ 2015/6, $M_w \ge 4.0$ 36.5 years

Taiwan Region:

- 1900 ~ 2015/6, $M_w \ge 6.5$ 116.5 years
- 1935 ~ 2015/6, M_w ≥ 5.5 81.5 years
- 1973 ~ 2015/6, M_w ≥ 4.0 43.5 years

Pacific Region:

- 1910 ~ 2015/6, $M_w \ge 6.5$
- 1918 ~ 2015/6, M_w ≥ 4.9 98.5 years
- 1980 ~ 2015/6, M_w ≥ 4.0 36.5 years

Estimating b-value and Activity Rate

Maximum Likelihood Estimation (Weichert, 1980)

Parameters setting

- $M_{min} = 4.0$
- M_{max} = Max(observation)
- Delta M = 0.2

Example input data

- Magn. intervals (4.0, 4.2, 4.4,, 5.8, 6.0, 6.2, 6.4)
- Accumulated annual rate (10.8, 6.8, 4.3,..., 0.07, 0.02, 0.01)

- When there is not enough data for one subzone alone to estimate b-value, we will combine two subzones according to tectonic and geological features to estimate it.
- For example, BS15 & BS03, BS16 & BS19

Calculation of b-value in ZB Subduction Zones

- > 123°E to West : Separated by 150 km depth
- > 123°E to East : Just one zone
- > 21°N to North : Separated by 150 km depth
- > 21°N to South : Just one zone

b-value & activity and M_{max} in <u>Shallow Zones</u> nearby NPP1 & NPP2

Zoning Scheme	Controlled Zone	b-valı sig	ie and ma	Activity rate, N(5.0)	Max. Magn. in hazard cal.
ZB	BS15	0.694	0.093	0.029	6.5 / 6.7 / 7.0
ZS	SS04	0.694	0.189	0.013	6.5 / 6.7 / 7.0
ZZ	ZS05	0.926	0.076	0.439	7.0 / 7.2 / 7.5

b-value & activity and M_{max} in <u>Shallow Zones</u> nearby NPP4

Zoning Scheme	Controlled Zone	b-value and sigma		Activity rate, N(5.0)	Max. Magn. in hazard cal.
70	BS04	1.009	0.050	1.057	6.8 / 7.0 / 7.3
ZB	BS03	0.694	0.093	0.058	6.5 / 6.7 / 7.0
70	SS14b	0.888	0.043	0.521	6.5 / 6.7 / 7.0
25	ZB BS04 BS03 ZS SS14b SS04 ZZ ZS06	0.694	0.189	0.013	6.5 / 6.7 / 7.0
77	ZS06	1.006	0.038	1.942	8.29 / 8.29 / 8.29
22	ZS01	0.935	0.021	5.380	8.0 / 8.0

b-value & activity and M_{max} in <u>Shallow Zones</u> nearby NPP3

Zoning Scheme	Controlled Zone	b-valu sig	ie and ma	Activity rate, N(5.0)	Max. Magn. in hazard cal.
70	BS18	0.820	0.071	0.540	7.7 / 7.7 / 7.7
۷D	BS21	0.970	0.057	0.816	7.4 / 7.6 / 7.9
ZS	SS12	0.885	0.028	0.462	7.03 / 7.23 / 7.53
ZZ	ZS07	1.102	0.029	3.995	7.7 / 7.7 / 7.7

Parameters for HC of Volcanic Source Zones

Setting for Seismic Source Calculation						
Name of Zone	Tatun	Keelung Nearshore	Keelung Offshore	Turtle Island	Okinawa Trough	
Depth of Zone (km)	10	15	15	15	15	
b-value ^[1]	1.032 (±0.117)	1.333 (±0.145)	1.000 ^[2]	0.919 (±0.015)	0.811 (±0.048)	
N(5.0) ^[1]	0.0030	0.0003	0.0001	0.1550	0.1980	
Max. Magnitude, M _u ^[3]	6.0	6.0	6.0	6.5	6.5	

^[1] Based on mainshocks catalog provided by Y.M. Wu, and Maximum Likelihood Estimation ($m_0 \ge 2.0$)

- ^[2] Assumed b-value as 1.000 due to lack of seismic data
- ^[3] Additional Reference: Payne et al. (2015). "SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory," Rev. 0, INL/EXT-15-36682, p.77.

Setting	for Grou	ind Motion Calcu	lation	
Crustal GMPE	ASK14,	BSSA14, CB14, CY	14, ID14	
Sigma	0.55	Max. Epsilon	4.0	

b-value at Each Subzone

Logic Tree Node of b-value & Activity Rate (BS04)

 $0.02 < \sigma < 0.25$

Logic Tree Node of b-value & Activity Rate (BS14)

Smoothed Activity Rate in Zoneless Model

Smoothed-Gridded Seismicity (Scheme Z)

Seismic data

- Period: 1900 ~ 2015/06/30
- Mw≥5.5
- Remove fore- and after-shocks
- Remove fault/volcanic events

Grid size

Size of Grid Cell: 0.1° x 0.1°

Spatial smoothing function

– 2-D Gaussian Distribution

$$f(x, y) = \sum_{i=1}^{n} \sum_{j=1}^{d} \frac{1}{2\pi h_{x} h_{y}} \exp\left(-\frac{1}{2}\left[\left(\frac{x_{i}}{h_{x}}\right)^{2} + \left(\frac{y_{i}}{h_{y}}\right)^{2}\right]\right)$$

Gaussian Distribution Curve

Area under the Gaussian distribution curve

Use Gaussian distribution with various standard deviation to describe the relative activity rate distribution in each subzone

Smoothing Distance Setting for Scheme Z

Adaptive Radius in Scheme Z

Rupt. Length w.r.t. Magnitude

[0.5]

kth Nearest Neighbor Distance

[0.5]

Rupture Length w.r.t. Magnitude

- Applying W&C94 Scaling Law (all type)
 - $log10(L) = -2.44 + 0.59M_w \pm sigma (0.16)$ (L: subsurface rupture length)

Assuming

- Future earthquake will most likely occur around the previous location
- the size of seismogenic region depends on the earthquake magnitude
- Setting sigma of the 2-D Gaussian distribution equal to 0.7L
 - Epicenter may not locate at half rupture length
 - Considering uncertainty, set the rupture length equal to mean plus one sigma in W&C94

Magnitude	RLD by W&C	94 ALL Type (km)
Mw	mean	mean + sigma
5.5	6.4	9.2
6.0	12.6	18.2
6.5	24.8	35.9
7.0	49.0	70.8
7.1	56.1	81.1
7.2	64.3	92.9
7.3	73.6	106.4
7.4	84.3	121.9
7.5	96.6	139.6
7.6	110.7	160.0
7.7	126.8	183.2
8.0	190.5	275.4

Smoothed Rate by W&C94 Scaling Law

K-th Nearest Neighbor Distance

- K-th Nearest Neighbor (KNN)
- Based on the Density of Earthquake Distribution
 - Region with low seismicity rate: larger smoothing distance larger sigma in Gaussian distribution
 - Region with large seismicity rate: smaller smoothing distance smaller sigma in Gaussian distribution
- Gradually increase the K-value to check changes in seismic rate distribution
- K-value set to 10

Example of 1st nearest neighbor (1-NN)

Smoothed Rate by K-th Nearest Neighbor

Longitude (°E)

1-NN

2-NN

Area Source Showing 0.1 ° Smoothed-Gridded Seismicity Rate

4-NN

N N

ď

log.

Smoothed Rate by K-th Nearest Neighbor

5-NN

Area Source Showing 0.1 ° Smoothed-Gridded Seismicity Rate 2-D Gaussian smoothing function with correlation distance by neighbor number 30)

Area Source Showing 0.1 ° Smoothed-Gridded Seismicity Rate

30-NN

0

Focal Mechanism Statistics

Classification of Style of Faulting

Summary of Abrahamson, N., & Silva, W. (2008).

Rake is used to describe the direction of fault movement with respect to the strike (measured anti-clockwise from the horizontal, up is positive; values between –180° and 180°) [G.H. Davis and S.J. Reynolds (1996)]

Count percentage of style of faulting in each subzone

Depth Probability Density Function

Depth Probability Density Function

Decluster and relocated EQ catalog

- 1990 2015/6/30
- Mw≧4.0
- Remove fault/volcanic events

Shallow zone

 Truncated normal distribution

Deep zone

Triangular distribution

Subduction Intraslab

Uniform Distribution

CWB Region (shallow)

Example of Depth PDF – Scheme B (Shallow Zone)

Example of Depth PDF – Scheme B (Deep Zone)

47

Longitude ([°]N)

Number of Earthquake Event

GMPE in Different Source Zones

Adopted GMPE

Shallow zone & volcano source

Crustal GMPE

Deep zone & subduction intraslab

Subduction intraslab GMPE

Beneath interface crust:

Subduction interface GMPE

Thank You for Your Attention

Modeling of Areal Sources

Tectonic Structure in Taiwan

Modeling of Areal Sources

Shallow/Deep Zones

- Depth boundary
 - Scheme ZB & ZZ: Continental: 35 km; Oceanic: 50 km
 - Scheme ZS: 35 km in all cases
- Maximum depth: 300 km

Subduction Intraslab

- Ryukyu Trench (A A')
 - Beneath Interface Crustal (Depth: 0~35 km) for ZB & ZZ
 - Intraslab (35 km~ 300 km)
- Manila Trench (B B')
 - Beneath Interface Crustal (Depth: 0~50 km) for ZB & ZZ
 - Intraslab (50 km[~] 250 km) for ZB & ZZ Intraslab (35 km[~]) for ZS

Volcanic sources

Zoning Schemes for Shallow/Deep Zones

Volcanic Source Zones Nearby Taiwan

Seismicity Distribution of Volcanic Zones (Map View) - Declustering

Zoning Scheme B for Subduction Intraslabs

Zoning Scheme S for Subduction Intraslabs

Zoneless Scheme Z for Subduction Intraslabs

Summary of Parameters used in Magnitude PDF

		b-val Sig	lue & ;ma	N (5.0)	Mmin	Mmed	Mmax	
	S01	0.574	0.113	0.144	7.2	7.4	7.7	
	S02	1.017	0.048	1.322	8.29	8.3	8.3	
NPP1	S03	0.694	0.093	0.058	6.5	6.7	7	
NPP2 NPP4	S04	1.009	0.050	1.057	6.8	7	7.3	
	S05	1.172	0.148	0.146	6.5	6.7	7	
	S06	0.988	0.087	0.367	7.3	7.5	7.8	
	S07	0.813	0.060	0.760	7.42	7.62	7.7	
	S08	0.887	0.094	0.363	6.65	6.85	7.15	
	S09	0.765	0.078	0.567	7.4	7.6	7.7	
	S10	0.847	0.041	1.664	7.5	7.7	7.7	
	S11	0.706	0.090	0.475	7.5	7.7	7.7	
	S12	0.878	0.056	0.844	7.6	7.7	7.7	
_	S13	1.255	0.057	0.852	7.01	7.21	7.51	
NPP1	S14	0.766	0.211	0.103	6.5	6.7	7	
NPP4	S15	0.694	0.093	0.029	6.5	6.7	7	
	S16	0.902	0.156	0.053	6.5	6.7	7	
_	S17	0.958	0.063	0.687	7.4	7.6	7.7	
NPP3	S18	0.820	0.071	0.540	7.7	7.7	7.7	
	S19	0.902	0.156	0.105	6.87	7.07	7.37	
_	S20	1.008	0.054	0.857	7.6	7.7	7.7	
NPP3	S21	0.970	0.057	0.816	7.4	7.6	7.9	
_	S22	1.254	0.098	0.424	6.61	6.81	7.11	
	S23	0.899	0.244	0.102	6.5	6.7	7	
	S24	0.811	0.089	0.377	7.71	7.7	7.7	
	S25	1.003	0.203	0.099	6.5	6.7	7	

Zoning Scheme B, Shallow zone parameters setting

ZB-Deep zone

61

		b-value	& Sigma	N (5.0)	Mmin	Mmed	Mmax	
	S01	0.982	0.089	0.147	7.20	7.40	7.70	
	S02	0.865	0.121	0.070	6.50	6.70	7.00	
NPP1	S03	0.866	0.047	0.601	6.61	6.81	7.11	
NPP2	S04	0.694	0.189	0.013	6.50	6.70	7.00	
NPP4	S05A	1.092	0.107	0.018	6.50	6.70	7.00	
	S05B	1.123	0.066	0.050	6.50	6.70	7.00	
	S06	1.064	0.044	0.129	6.60	6.80	7.10	
	S07	0.936	0.028	0.392	7.60	7.70	7.70	
	S08A	1.015	0.114	0.023	6.50	6.70	7.00	
	S08B	0.824	0.140	0.055	6.50	6.70	7.00	
	S09	1.069	0.068	0.053	6.62	6.82	7.12	
	S10	0.912	0.041	0.207	6.62	6.82	7.12	
	S11	1.033	0.039	0.180	6.59	6.79	7.09	
NPP3	S12	0.885	0.028	0.462	7.03	7.23	7.53	
	S13	1.078	0.093	0.137	6.50	6.70	7.00	
	S14A	0.828	0.056	0.124	6.50	6.70	7.00	
NFF4	S14B	0.888	0.043	0.521	6.50	6.70	7.00	
	S14C	0.698	0.031	0.879	6.87	7.07	7.37	
	S15	0.897	0.028	1.132	7.70	7.70	7.70	
	S16A	0.772	0.019	2.673	7.20	7.40	7.70	
	S16B	0.687	0.083	0.165	6.50	6.70	7.00	
	S17A	0.854	0.017	1.221	7.20	7.40	7.70	
	S17B	0.782	0.057	0.286	7.40	7.60	7.70	
	S18A	0.961	0.024	0.519	7.40	7.60	7.70	
	S18B	0.748	0.053	0.335	7.50	7.70	7.70	
NPP3	S19A	0.806	0.036	0.735	7.70	7.70	7.70	
	S19B	0.803	0.055	0.309	7.60	7.70	7.70	
NPP3	S20	0.875	0.031	1.203	7.40	7.60	7.90	
	S21	0.999	0.025	1.993	6.69	6.89	7.19	
	S22	1.163	0.102	0.130	7.50	7.70	7.70	
	S23	0.675	0.045	0.487	7.40	7.60	7.70	
	S24	1.247	0.040	0.973	8.29	8.30	8.30	
	S25	0.972	0.052	0.629	7.71	7.91	8.21	
	S26	1.103	0.121	0.114	7.11	7.31	7.61	
	S27	1.167	0.142	0.078	7.30	7.50	7.80	
	S28	0.859	0.152	0.084	6.50	6.70	7.00	
	S29	1.109	0.082	0.226	7.70	7.70	7.70	
	S30	1.166	0.157	0.065	6.50	6.70	7.00	

Zoning Scheme S, Shallow zone parameters setting

Zoning Scheme S, Deep zone & Subduction zone parameters setting

NPP1		h-value	& Sigma	N(5.0)	Mmin	Mmed	Mmax	1
NPP2	D01	0.762	0.096	0.149	6 50	6 70	7.00	
NPP4	D01	1.023	0.058	0.172	7.70	7 70	7.00	
H	D02	0.827	0.027	1 588	7.70	7.52	7.82	
NPP3	D04	1.073	0.027	0.286	6.77	6.97	7.02	-
	D01	0.750	0.032	0.738	7.00	7.20	7.50	
	D06	0.963	0.078	0.142	6.50	6 70	7.00	
	D07	0.731	0.084	0.160	7.70	7.70	7.70	
	D08	1.103	0.103	0.105	7.00	7.20	7.50	
	SNP1	0.866	0.034	0.934	8.00	8.10	8.10	
	SNP2	1.058	0.053	0.396	6.89	7.09	7.39	
NPP1 NPP2 NPP4	SNP3	0.940	0.038	0.743	7.90	8.10	8.10	
	SNP4	0.990	0.050	0.486	6.50	6.70	7.00	
	SNP5	0.891	0.049	0.467	7.80	8.00	8.10	
	SNP6	0.972	0.062	0.303	7.20	7.40	7.70	
	SNP7	1.038	0.074	0.201	8.10	8.10	8.10	
	SNP8	0.937	0.058	0.344	7.30	7.50	7.80	
	SNP9	0.848	0.087	0.174	6.50	6.70	7.00	
	SSP2	0.816	0.027	1.538	6.87	7.07	7.37	
	SSP3	0.855	0.041	0.712	7.20	7.40	7.70	

Zoneless, Shallow zone, Deep zone & Subduction zone parameters setting

Count percentage of style of faulting in each subzone